• <abbr id="ck0wi"><source id="ck0wi"></source></abbr>
    <li id="ck0wi"></li>
  • <li id="ck0wi"><dl id="ck0wi"></dl></li><button id="ck0wi"><input id="ck0wi"></input></button>
  • <abbr id="ck0wi"></abbr>
  • <li id="ck0wi"><dl id="ck0wi"></dl></li>
  • Home >

    New Technology: New Catalyst Can Transform Waste Into Valuable Environmental Protection Products

    2023/3/21 23:51:00 0

    Catalyzer

    A team of scientists led by Aaron Sadow, a researcher at Ames National Laboratory, a professor of chemistry at Iowa State University, and director of the Institute for Cooperative Upgrading of Plastics (iCOUP), developed a new catalyst that can transform hydrocarbons into more valuable chemicals and materials, making them easier to recycle and environmentally friendly. This catalyst can transform materials such as engine oil, disposable plastic bags, water or milk bottles, bottle caps, and even natural gas into more sustainable substances.

    ?

    This new catalyst aims to add functional groups to aliphatic hydrocarbons, which are organic compounds composed of only hydrogen and carbon. These hydrocarbons usually do not mix with water and form independent layers due to lack of functional groups. By adding functional groups to these hydrocarbon chains, the properties of materials can be greatly changed, making them easier to recover.

    "Methane in natural gas is the simplest hydrocarbon, with only carbon hydrogen (CH) bond. Oil and polymer have carbon atomic chains connected by carbon carbon (CC) bond," Sadow explained.

    Aliphatic hydrocarbons constitute a large number of petroleum and refined petroleum products, such as plastics and engine oils. These materials "have no other functional groups, which means they are not easily biodegradable," Sadow said. "Therefore, for a long time, one of the goals in the field of catalysis is to be able to add these kinds of materials to other atoms, such as oxygen, or to establish new structures from these simple chemicals."

    Unfortunately, the traditional method of adding atoms to the hydrocarbon chain requires a large amount of energy input. First, oil is heated and pressurized to "crack" into small building blocks. Next, these components are used to grow the chain. Finally, add the desired atoms to the end of the chain. In this new method, existing aliphatic hydrocarbons can be directly converted at low temperature without cracking.

    Sadow's team used a catalyst to break the CC bond in these hydrocarbon chains, while connecting aluminum to the end of the smaller chain. Next, they inserted oxygen or other atoms to introduce functional groups. In order to develop a complementary process, the team found a way to avoid the CC bond breaking step. According to the chain length of the starting material and the ideal characteristics of the product, researchers want to shorten the chain or simply add oxygen functional groups. If CC cracking can be avoided, in principle, the chain can only be transferred from the catalyst to aluminum, and then air can be added to install functional groups.

    Sadow explained that the catalyst was synthesized by attaching a commercially available zirconium compound to the commercially available silica alumina. These materials are abundant and cheap on the earth, which is beneficial to potential commercial applications in the future.

    In addition, catalysts and reactants also have advantages in sustainability and cost. Aluminum is the most abundant metal on the earth, and the synthesis of aluminum reactants used will not produce waste by-products. Zirconia based catalyst precursors are stable in air, easily available, and activated in the reactor. Therefore, unlike many early organometallic chemistry, which is extremely sensitive to air, this catalyst precursor is easy to handle.

    This chemical reaction is a step towards influencing the physical properties of various plastics, such as making them stronger and easier to color

    Sadow attributed the success of this project to the cooperative nature of iCOUP. The Pellas group of Ames National Laboratory used nuclear magnetic resonance (NMR) spectroscopy to study the structure of the catalyst. Coates, LaPointe and Delferro teams from Cornell University and Argonne National Laboratory studied the structure and physical properties of polymers. The Peters group at the University of Illinois has statistically modeled polymer functionalization.

    • Related reading

    New Material: New Cellulose Based Solar Thermal Conversion Material

    Technology Extension
    |
    2023/3/14 23:10:00
    0

    New Material: Silicon Dioxide Composite Fiber With Rabbit Hair Like Single Medullary Cavity Structure Is Heat Insulated And Durable

    Technology Extension
    |
    2023/3/13 13:28:00
    0

    Difficulties And Treatment Methods Of Feed Conversion Of Cotton Straw

    Technology Extension
    |
    2023/2/13 12:46:00
    3

    New Material: Efficient Preparation Of Succinic Acid From Lignocellulose

    Technology Extension
    |
    2023/1/5 15:16:00
    12

    New Material: New OLED Can Make Clothes Thinner Than Hair

    Technology Extension
    |
    2023/1/5 12:25:00
    148
    Read the next article

    Adidas X Qile X Ronnie Fieg Three Party Co Branded Sneakers Design Appreciation

    Adidas x Qile x Ronnie Fieg three party sneakers will be released soon. It is about sharing the release time and

    主站蜘蛛池模板: 中文亚洲成a人片在线观看| 国产suv精品一区二区33| 亚洲成人在线网| 91黑丝国产线观看免费| 污视频免费在线观看网站| 奶特别大的三级日本电影| 免费无遮挡无码视频在线观看| 东京热加勒比无码少妇| 精品人妻VA出轨中文字幕| 很黄很刺激很爽的免费视频| 十大最污软件下载| www.日韩精品| 爱情岛论坛亚洲永久入口口| 在线播放免费人成毛片试看| 亚洲精品视频在线| 92国产精品午夜福利| 欧美成人鲁丝片在线观看| 国产精品无码专区av在线播放| 亚洲国产综合自在线另类| 污片在线观看网站| 日韩精品一区二区三区在线观看| 国产午夜无码福利在线看网站| 久久亚洲美女精品国产精品| 老司机精品在线| 妖精动漫在线观看| 亚洲精品无码国产| fulidown国产精品合集| 日韩精品视频观看| 国产一区二区三区在线免费观看| 中文在线观看视频| 狠狠综合久久久久尤物丿 | 精品国产亚洲一区二区三区在线观看| 岛国在线免费观看| 亚洲综合久久1区2区3区| 香蕉视频a级片| 日本牲交大片免费观看| 印度精品性hd高清| 99re在线观看| 林俊逸高圆圆第1190章| 国产一国产一级毛片视频在线| 一区二区三区在线|欧|